Exceptional sets for linear differential polynomials
نویسندگان
چکیده
منابع مشابه
A fractional type of the Chebyshev polynomials for approximation of solution of linear fractional differential equations
In this paper we introduce a type of fractional-order polynomials based on the classical Chebyshev polynomials of the second kind (FCSs). Also we construct the operational matrix of fractional derivative of order $ gamma $ in the Caputo for FCSs and show that this matrix with the Tau method are utilized to reduce the solution of some fractional-order differential equations.
متن کاملExceptional planar polynomials
Planar functions are special functions from a finite field to itself that give rise to finite projective planes and other combinatorial objects. We consider polynomials over a finite field K that induce planar functions on infinitely many extensions of K; we call such polynomials exceptional planar. Exceptional planar monomials have been recently classified. In this paper we establish a partial...
متن کاملNon-real zeros of linear differential polynomials
Let f be a real entire function with finitely many non-real zeros, not of the form f = Ph with P a polynomial and h in the Laguerre-Pólya class. Lower bounds are given for the number of non-real zeros of f ′′ + ωf , where ω is a positive real constant.
متن کاملZeros of exceptional Hermite polynomials
Exceptional orthogonal polynomials were introduced by Gomez-Ullate, Kamran and Milson as polynomial eigenfunctions of second order differential equations with the remarkable property that some degrees are missing, i.e., there is not a polynomial for every degree. However, they do constitute a complete orthogonal system with respect to a weight function that is typically a rational modification ...
متن کاملa fractional type of the chebyshev polynomials for approximation of solution of linear fractional differential equations
in this paper we introduce a type of fractional-order polynomials basedon the classical chebyshev polynomials of the second kind (fcss). also we construct the operationalmatrix of fractional derivative of order $ gamma $ in the caputo for fcss and show that this matrix with the tau method are utilized to reduce the solution of some fractional-order differential equations.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales Academiae Scientiarum Fennicae Series A I Mathematica
سال: 1986
ISSN: 0066-1953
DOI: 10.5186/aasfm.1986.1109